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Abstract

Patient movement during the acquisition of magnetic resonance images (MRI) can cause unwanted 

image artefacts. These artefacts may affect the quality of clinical diagnosis and cause errors in 

automated image analysis. In this work, we present a method for generating realistic motion 

artefacts from artefact-free magnitude MRI data to be used in deep learning frameworks, 

increasing training appearance variability and ultimately making machine learning algorithms such 

as convolutional neural networks (CNNs) more robust to the presence of motion artefacts. By 

modelling patient movement as a sequence of randomly-generated, ‘demeaned’, rigid 3D affine 

transforms, we resample artefact-free volumes and combine these in k-space to generate motion 

artefact data. We show that by augmenting the training of semantic segmentation CNNs with 

artefacts, we can train models that generalise better and perform more reliably in the presence of 

artefact data, with negligible cost to their performance on clean data. We show that the 

performance of models trained using artefact data on segmentation tasks on real-world test-retest 

image pairs is more robust. We also demonstrate that our augmentation model can be used to learn 

to retrospectively remove certain types of motion artefacts from real MRI scans. Finally, we show 

that measures of uncertainty obtained from motion augmented CNN models reflect the presence of 
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artefacts and can thus provide relevant information to ensure the safe usage of deep learning 

extracted biomarkers in a clinical pipeline.

Index Terms

MRI; motion artefacts; deep learning; segmentation; data augmentation; artefact correction; 
uncertainty

I Introduction

Patient movement during the acquisition of magnetic resonance images (MRI) can result in 

unwanted image artefacts, which manifest as blurring, ringing or ghosting effects, depending 

on both timing and spatial changes during a scan [1]. Motion artefacts can affect the 

interpretability of images, potentially affecting the quality of a patient’s diagnosis, and/or 

leading to increased cost if the images are judged unusable and the acquisition has to be 

repeated. Artefacts can also affect the performance of post-processing algorithms, and it has 

been shown that motion artefacts consistently affect segmentation measurements on 

structural MR images [2]. Furthermore, in the context of research cohorts, artefacts may lead 

to inclusion bias in statistical analysis as more impaired subjects tend to have difficulties 

staying still, resulting in poorer quality scans more likely to be excluded [3]. Even if 

included, biomarker measures may be biased by artefacts leading to spurious findings [2].

The type of motion artefacts that appear in MR images depends on the amount and timing of 

patient movement with regards to the k-space acquisition trajectory. Movements that occur 

close to the k-space centre correspond to low image frequencies and tend to result in 

ghosting artefacts, where the image is repeated, as does quasi-periodic motion e.g. 

respiration [4]. Movements toward the edges of the k-space corresponding to the acquisition 

of high image frequencies, often lead to ringing artefacts. Most commonly observed MRI 

motion artefacts introduce minor blurring due to small movements spanning a range of 

frequencies during k-space acquisition. Additionally, motion artefact appearance depends on 

the k-space scanning strategy and notably whether the acquisition is performed in 2D or 3D.

Prior work on motion artefacts in MRI has mainly focused on designing ways of correcting 

for them, for example [5], [6], [7], [8], [9] and [10]. This work, however, addresses the 

problem of motion artefacts under a different perspective – attempting to make automated 

systems of image analysis more robust to their presence. In recent years, deep learning 

frameworks have demonstrated high performance when applied to segmentation and 

classification tasks. In a deep learning setup, data augmentation is a classical way to 

artificially increase data variability and thus increase the network’s potential for 

generalisation [11]. While classical data augmentation usually involves random geometric 

transformations and/or intensity changes, biologically and physically plausible augmentation 

models would be beneficial to better sample the space of possible variations.
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II Motion Artefacts in Deep Learning Frameworks

Deep learning frameworks dealing with motion artefacts have so far proposed to either 

recognise corrupted images or attempted to correct for the presence of artefacts. Meding et 

al. [13] used convolutional neural networks to classify MR magnitude images as artefacted 

or not. Going beyond the binary classification task, Duffy et al. [14], also using CNNs, 

attempted to learn how to retrospectively remove artefacts from MR images. Their network, 

however, trained on synthetic data proposes an unrealistic motion model that is limited to 

axial translation. Using a Generative Adversarial Network, Armanious et al. proposed 

MedGAN [15] with the objective of ‘translating’ motion-corrupted MR images to their 

corresponding motion-free images, but restricted their work to 2D slices. Pawar et al. [16], 

with the objective of learning to remove artefacts, modelled 3D motion in the image domain 

and reconstructed the k-space from multiple resampled images using however only 2D axial 

slices. In contrast to these approaches, we argue that it is ultimately more useful to optimise 

frameworks in an end-to-end manner, rather than generating intermediate motion-corrected 

images, thus enforcing robustness to artefacts at the level of the internal representation of the 

data. Such strategy inherently avoids caveats of GANs, that may wrongly introduce non-

existing information (hallucination), or of artefact removal strategies that may only account 

for part of the existing artefacts thus resulting in data that is unusable for further processing. 

Moreover, end-to-end learning allows for model artefact-induced task uncertainty to be 

learned directly from raw artefact inputs.

III Motion Artefact Model

We propose a k-space augmentation method to generate motion artefacts from artefact-free 

magnitude MR image volumes. Our proposed method is illustrated in Fig. 1 [17]. The 

procedure is summarised by the five following steps: (1) Generate a random movement 

model by sampling movements from different probability distribution functions (PDFs). (2) 

Demean the generated movement transforms. (3) Resample the artefact-free volume 

according to the demeaned movement model. (4) Reconstruct a composite k-space from the 

k-spaces of multiple resampled volumes. (5) Transform the combined k-space back to the 

image domain to produce the final artefact sample.

Taking each of these steps in turn, we first sample movements from different probability 

distribution functions, modelling a patient’s head motion throughout the scan as a sequence 

of independently occurring small and large motions (e.g. twitches/nodding). Each movement 

is modelled by a 3D affine A matrix comprising of a rigid 3D rotation and translation in the 

image domain, where the angles of rotation θ are sampled between (−30°, 30°) and the 

translation δ between (-10mm, 10mm) in all three axes. Poisson distributions are used to 

sample the magnitude of rotation and translation of each of the N movements – small 

movements are assumed to occur more often and large movements less frequently – while a 

uniform distribution is used to sample the time t in k-space at which each movement occurs 

(assuming k-space scans in the phase encoding direction). This means that a movement 

occurring at time t corresponds to a specific location in the k-space volume kt = (kx, ky, kz) 

depending on the scan trajectory, such that the brain remains in position i between k-space 

elements kti and kti+1. The sequence of movement transforms A i = 1
N  is composed 
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incrementally in log-Euclidean space [18], using the matrix exponential exp A = ∑k = 0
∞ Ak

k!
and corresponding matrix logarithm. By transferring to the log-Euclidean domain this 

provides us with the ability to create weighted combinations of transformations and to 

linearly interpolate between them.

With the motion model defined, the second step is to ‘demean’ the movements. When 

applying our augmentation model to a clean magnitude image I 0, we expect the barycenter 

of the imaged object to remain in approximately the same position within the 3D volume as 

this is the position of the tissue segmentation. This is achieved by ‘demeaning’ each affine 

transform Ai by pre-multiplying by the inverse of the average transform Aavg, computed as 

the weighted sum of the sequence of N affine transformations in log-Euclidean space, given 

by Equation 1,

Aavg = exp ∑
i = 1

N
wilog Ai , (1)

where wi is the weighting given to the i-th movement. Since movements at different parts of 

the k-space contribute different spatial frequencies, we weight each Ai by its signal 

contribution to the final image. This means that movements at the k-space centre (low 

frequencies) have a higher weight since their impact on the final 3D position of the brain, 

and the overall Fourier power spectrum, is much greater. Each weight is estimated by 

masking the 3D k-space of I 0 with a binary mask Mi corresponding to the k-space elements 

acquired while at position i, transforming back to the image domain, and summing the 

resulting voxel intensities, as given by wi = ∑voxelsFFT −1 Mi ⊙ FFT I0 , with the weights 

then normalised to sum to 1.

The third step is to apply each demeaned affine transform Ai
d to the original artefact-free 

image volume I 0 and resample using b-spline interpolation. Note that we always resample 

the original image volume to reduce propagating interpolation errors throughout the 

sequence. The i-th demeaned affine transformation is therefore given as the sum in log-

Euclidean space of all demeaned transforms up to this point, as given by Equation 2,

Ai
d = exp log Ai − 1

d + log Aavg
−1 + log Ai (2)

where the initial transform A0
d is set to the demeaned identity transform, i.e. log Aavg

−1 .

Following each transformation, we compute the k-space Ki as the 3D Fourier Transform of 

each resampled image Ii.

The fourth step is to combine the 3D Fourier transforms corresponding to each position of 

the brain in the sequence, joined together at sampled times t, forming a complete k-space of 

the scan containing movement, i.e. Kc = ∑i
N Mi ⊙ Ki . Finally, the inverse 3D Fourier 

Transform of the composite k-space is derived, and the magnitude image provides the final 

artefact sample. The steps of the augmentation method are more formally outlined in 
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Algorithm 1 and examples of our artefact augmentation are shown in Fig. 2. The effect of 

the demeaning process on the brain position is shown in Fig. 3.

Implementation Details

Although the proposed movement model is a simplified approximation to patient motion 

within the scanner, in practice the augmentation procedure is quite computationally 

expensive, but not prohibitively so. This is due to resampling the input image volume to 

generate different head positions, especially when each volume in our dataset is around 2563 

voxels in size. A significant time component is also a result of the 3D FFT of resampled 

images and the inverse 3D FFT of the combined k-space. As the number of times an image 

is resampled is randomised, the time taken to generate motion artefacts varies between 

samples. However, on average, it takes roughly 30 seconds to generate an artefact sample 

from a clean input volume on the CPU. This will slow down the training of neural networks 

if this is done on-the-fly, but artefacts can be pre-computed before training. Modern deep 

learning frameworks are also starting to allow for Fourier domain operations such as FFTs 

on the GPU, meaning that the proposed augmentation is likely to see significantly speed-ups 

in future.

Algorithm 1: Motion artefact augmentation algorithm.

      Input: Artefact-free image volume I 0

      Result: Artefacted image volume I a

     ▹ Sample N movements

  1: θ , δ , t i = 1
N

     ▹ Construct 3D affine matrices

  2: A i = 1
N , Ai = R θi δi

     ▹ Construct k-space masks

  3: M i = 0
N , M kx, ky, kz =

1 if kti < k < kti + 1
0 otherwise

     ▹ Compute weights

  4: wi = ∑voxelsFFT −1 Mi ⊙ FFT I0

  5: wi = wi/∑i
N wi

     ▹ Average affine transform

  6: Aavg = exp ∑i = 1
N wi log Ai

     ▹ Demean and resample sequence

  7: Init: A0
d = Aavg

−1

  8: for i = 1, …, N do
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  9:       Ai
d = exp log Ai − 1

d + log Aavg
−1 + log Ai

10:     Ii Resample I0, Ai
d

11:     Ki = FFT(Ii)

12: end

      ▹ Combine k-spaces

13: Kc = ∑i = 0
N Mi ⊙ Ki

14: Ia = FFT −1(Kc)

IV Experiments

We evaluate our motion artefact augmentation model on both simulated and real-world data 

containing artefacts in the context of three segmentation tasks: cortical gray matter (CGM), 

hippocampus and total intracranial volume (TIV). Data used in this work was obtained from 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). 

Launched in 2003, ADNI attempts to assess whether medical imaging and biological 

markers and clinical assessment can be combined to measure progression of Alzheimer’s 

Disease. More information can be found at www.adni-info.org.

A Network Architecture and Implementation Details

We used the HighRes3DNet [19] architecture implemented in NiftyNet [20], with Dice loss 

[21], a patch size of 803 and batch size of 1, trained on a single GPU with Adam optimiser 

[22] and a learning rate of 10−4. In the context of segmentation, due to imbalance between 

foreground and background elements, the sampling strategy is essential to the training 

performance. Therefore we employed a weighted patch sampling with higher weight given 

to regions defined by the Gaussian blurred ground-truth segmentation labels, such that the 

foreground/background weight ratio is roughly equal to the ratio of foreground/background 

voxels. Each model was trained until overfitting was observed or when reaching 100,000 

iterations.

B Simulated Dataset

For experiments on simulated data, we use 272 MPRAGE scans from ADNI and generate 15 

artefacted volumes per scan. The data was split into 80% training, 10% validation and 10% 

testing and separate CNNs were trained to segment CGM, hippocampus and TIV. For each 

segmentation task, five models were trained with varying levels and types of augmentation. 

One was trained only on ‘clean’ data, i.e. the original artefact-free scans. Another was 

trained with ‘classical’ augmentation, consisting of random rotation, translation and scaling. 

The remaining three models were trained with increasing amounts of motion artefact 

augmentation: where 25%, 40% and 50% of images seen in the training set contain 

movement artefacts, in addition to classical augmentations. Each model includes bias field 

augmentation by default to account for variability in image intensity across samples. All 
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models are tested on the same hold-out test set containing both clean and artificially 

artefacted data.

Segmentation performance for the three tasks across all models is evaluated with Dice score, 

positive predictive value (PPV), sensitivity and average distance (avgDist) metrics and 

presented in the first row of Fig. 4. Results of Bonferroni corrected matched pair Wilcoxon 

tests between models are presented on the bottom row. Generally, across the metrics, models 

trained with artefacts show improved performance on the test set, with lower variance. In the 

case of CGM, motion augmented models show a statistically significant improvement over 

the clean model (particularly 40% and 50% artefact models), and similar improvement over 

classical augmentation, except for average distance for which classical augmentation 

performs better. For hippocampus, motion augmentation improves upon the clean model in 

all metrics but is outperformed by classical augmentation, suggesting artefacts have less 

impact on the hippocampal region. For TIV, the 50% augmented model consistently 

performs the best and is statistically significant in terms of Dice and average distance. Since 

the distribution and severity of artefacts in the data is randomised, the impact on model 

performance varies across the metrics, but overall increased artefact variability translates to 

better performance on the test set.

C Real-world Dataset

Robustness of CNNs trained with the proposed motion augmentation to real-world 

movement artefacts was then evaluated in a test-retest setting. 106 quality-controlled (QC) 

pairs of MPRAGE test-retest images from ADNI on which only one of the images was 

considered artefacted by an expert human rater were used for this purpose.

The criteria for the QC is described in detail on the ADNI website. T1 images are manually 

graded subjectively by trained analysts into categories: 1-3 is acceptable and 4 is failure 

(unusable). Images graded as “excellent” contain no artefacts and these are used as ground-

truth, while images graded as “good,” “poor” or “unusable” may contain artefacts. Images 

indicated as “containing artefacts” are used if they have a corresponding artefact-free retest 

scan. We specifically chose images for which the rater had commented: “contains artefacts 

due to motion”, “blurring due to motion”, “ringing” or “ghosting”. Image pairs were chosen 

if it was mentioned that one scan was significantly better quality than the other, amounting 

to 106 test-retest pairs, a selection of which are shown in the Appendix.

Each test-retest image pair was rigidly registered together in a group-wise space to avoid 

interpolation bias. For comparison purposes, a benchmark label fusion algorithm [23] was 

used to perform the segmentation tasks on each pair of images. For each trained CNN model 

and the benchmark method, Dice score, PPV, sensitivity and average distance were used as 

evaluation measures between test and retest images, with the results obtained on the clean 

image being used as reference. Fig. 5 presents in the top row the corresponding boxplots for 

each segmentation task, while the second row displays the Bonferroni corrected matched-

pair Wilcoxon tests across models. On the real-world data, the boxplots show generally 

improved robustness (higher score and smaller variance) for increasing amounts of 

simulated movement augmentation during training. This suggests our augmentation model 

translates well to a real-world setting. In terms of Dice score, the 50% artefact model 
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performs the best across all tasks and shows a statistically significant improvement. The 

model also shows improvements for PPV and sensitivity but not average distance. The 40% 

artefact model is similar but performs poorly on TIV, perhaps due to the distribution of 

artefacts in the data. The clean model consistently performs the worst for all tasks and is 

even outperformed by the benchmark method. This is because the clean model has seen only 

“perfect” clean data and is therefore unable to generalise to poor-quality artefact images. 

The largest performance increase is between the clean and classically augmented models 

since spatial changes are the dominating cause of appearance variability in the data. 

Increasing amounts of artefact augmentation on top of classical augmentation generally 

show further improvements.

V Task-specific Uncertainty Estimation

Deep learning models for segmentation tasks classically provide for each voxel a point-

estimate probability of belonging to a certain class. Being able to provide in addition a 

calibrated measure of the uncertainty of a given prediction has become essential in 

applications for which safety is paramount such as medical applications.

As theorised by Gal and Gharhamani [24], uncertainty can be estimated by sampling at 

inference time from multiple outputs of the network trained with dropout. Adapting the 

approach from [25], uncertainty over the segmentation result is obtained as the variance over 

the predictions made from multiple forward passes of the dropout network. For training, the 

dropout rate was set at 0.5 everywhere except the initial layer, which was set to 0.05, and the 

final layer for which no dropout was used. Uncertainty estimates were made from 100 

forward passes of the dropout network. Mean and variance results obtained on the CGM and 

hippocampus segmentation tasks for the aforementioned models trained with dropout are 

shown in Fig. 6. Considering the uncertainty predictions for CGM segmentation, in models 

trained with motion augmentation, higher variance of predictions are observed in artefacted 

regions, especially close to the cortical surface, in comparison to the predicted uncertainty 

given the clean image. It is clear that uncertainty predictions made by the motion augmented 

model reflect the presence of motion artefacts in the data. Note that this is a behaviour that 

the clean and classically augmented models do not exhibit.

To further investigate the behaviour of segmentation uncertainty estimation in the presence 

of motion artefacts, with respect to the type of augmentation applied at training, per-voxel 

Kullback-Leibler divergence (KLD) maps comparing the sampled distributions for clean and 

artefacted images were calculated, as shown in the bottom rows of Fig. 6. By associating 

KLD with uncertainty, as measured by the sampled variance (std), we can examine this 

relationship for each model and mode of augmentation, visualised by the histogram plots of 

uncertainty on the artefacted image vs KLD in Fig. 7.

From the histograms, different modes of association between uncertainty and KLD can be 

interpreted as follows: 1) low std - low KLD: the model gives similar predictions on clean 

and artefacted images in a confident fashion; 2) high std - low KLD: the model provides 

highly similar distributions but overestimates uncertainty 3) low std - high KLD: the model 

provides mismatching answers with high confidence, a clinically unsafe behaviour 4) high 
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std - high KLD: the probability distributions are different from each other but the model is 

aware that it cannot ascertain the results with certainty. Note that, in the presence of heavily 

artefacted images (Fig. 7 a)), models trained on clean data or with only classical 

augmentation behave unsafely more often, i.e. more predictions with high KLD and low 

uncertainty. Models trained with motion augmentation were found to be safer.

Vl Artefact Removal

While not the main focus of this work, in this section we demonstrate that our artefact 

augmentation model can be also used to train CNNs to learn to retrospectively remove, to a 

limited extent, motion artefacts from MR images. Previously, we have argued that it is 

generally more useful to learn a task such as segmentation in an end-to-end manner so that it 

is robust to the presence of motion artefacts, rather than learning an intermediate step of an 

artefact-free image as this is essentially compressing the output of the bottleneck. However, 

in some cases it may be useful to work with an artefact-corrected image. For instance, a 

radiologist may wish to see an artefact-corrected image for visual inspection. Furthermore, 

many non-deep learning algorithms would not work within an end-to-end framework and 

therefore would require the artefact-corrected images as input.

Using our motion augmentation model, we trained CNNs to remove first synthetic artefacts 

from 3D image volumes, where the inputs to the network are simulated artefact images and 

the ground-truth labels are the corresponding artefact-free images. Model performance is 

evaluated by computing the average reconstruction error between artefacted and clean 

images since our augmentation model preserves the alignment of the object. We then applied 

the artefact correction model trained only on simulated artefacts to a dataset of unseen real-

world artefacts and similarly evaluated the reconstruction performance. Since our dataset of 

real-world images containing artefacts have been rigidly aligned to their corresponding 

ground-truth artefact-free images, we can directly compute the resulting error between them. 

To quantitatively evaluate the accuracy of the motion-corrected images, we compute the 

following error metrics between the ground-truth artefact-free images and the artefact-

corrected output images from the CNN model: the mean absolute error (MAE) and the 

structural similarity index (SSIM), where SSIM is computed as given by Equation 3.

SSIM = 2μxμy + c1 2σxy + c2
μx2 + μy2 + c1 σx2 + σy2 + c2

(3)

A Network Architecture and Implementation Details

As in our previous experiments, we utilised the High-Res3DNet architecture implemented in 

NiftyNet, however, modified for the regression task with a skip connection joining the input 

to the output. We trained with an L1 loss function on voxel intensities, a patch size of 803 

and batch size of 1, on a single GPU with Adam optimiser and a learning rate of 10−4 for 

100,000 iterations. As this is primarily an investigation of the effect of simulated artefact 

augmentation, other network parameters were not explored. Better artefact removal 

performance may be achievable with network/parameter searching and more sophisticated 
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loss functions such as L1 on image gradients and/or SSIM which are commonly used for 

image reconstruction tasks, but this is beyond the scope of this paper.

B Simulated Dataset

Using the same 272 scans from the ADNI dataset, we generated 300 random artefact 

samples per scan, with varying degrees of artefacts. Fig. 8 shows a sample of results for a 

hold-out synthetic test set. Table I (top) shows the results for MAE and SSIM between the 

uncorrected and motion-corrected images. For the corrected data, we observe a statistically 

significant lower median MAE, and a statistically significant higher median SSIM (indicated 

by the bold values). For both metrics the interquartile ranges are smaller for the corrected 

data.

C Real-world Dataset

Using the motion artefact correction model trained using only simulated data, inference was 

then performed on real-world artefacts from the ADNI dataset of 106 rigidly aligned quality-

controlled MPRAGE test-retest image pairs. Fig. 9 shows a sample of our results on real-

world artefact images not seen in training.

Table I (bottom) shows the results for MAE and SSIM metrics on the real-world hold-out 

set. The artefact removal model produces lower MAE and higher SSIM values as desired, 

however the improvement is only marginal and not statistically significant. Examining the 

motion-corrected images in Fig. 9, we observe a noticeable change in appearance as the 

model attempts to remove the artefacts, however mainly by blurring the image and it is 

unable to recover image details lost by severe motion artefacts. We find that for many 

artefacts in the real-world dataset, the artefact correction CNN is unable to completely 

remove the artefact, particularly in comparison to the model’s strong performance on 

simulated data. When computing the MAE, we discovered that the error is dominated by 

misalignment between the rigidly registered ground-truth artefact-free images and their 

corresponding artefact images. This is because it can be difficult to rigidly align images 

containing very severe artefacts, and so even after an attempted registration, some 

misalignment of the brains still remains. Therefore, in table I (bottom), we only compute 

results for images that are sufficiently well-aligned by rejecting image pairs with a before-

correction error in the 90th percentile of the data (confirmed as misaligned by visual 

inspection) such that we can compute a reasonable estimate of the error caused by the 

artefacts alone. This results in 98 real-world artefacts. We also mask the image volumes by 

dilated TIV masks, as shown in Fig. 9, to ignore differences outside of the brain.

The fact that, using CNNs, we are data and GPU memory-bound, means our models have 

limited capacity. It is likely the network underfits the problem and therefore the choice of 

network architecture, number of parameters and loss function are key factors in the 

algorithm’s ability to remove specific types of artefacts. Currently, we have chosen a generic 

form of motion model to cover many and varied types of movement artefacts using a single 

CNN, but one could tailor the sampling strategy to focus on specific artefact sub-types, such 

as “ringing” or “ghosting” artefacts. We can, however, note that because of the limited 

Shaw et al. Page 10

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 March 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



effective receptive field of the proposed network, spatially-limited artefacts such as 

“ringing”, are more easily removed than global artefact such as “ghosting”.

Considering the reconstruction results from the artefact removal CNN, we have seen that 

real-world artefacts can be sometimes only partially removed from images. Consequently, in 

an effort to illustrate that it is indeed better to learn the segmentation task end-to-end, in Fig. 

10 we estimate the uncertainty of the CGM segmentation given the motion-corrected images 

as input to the network. Using the same dropout method as discussed in Section V, the 

artefact-corrected images are passed through the segmentation CNN model that has been 

trained with only classical augmentations (rotation, translation, scaling) since if the motion 

artefact has been successfully removed from the image then only classical augmentations 

should be required to account for image appearance variability. The model uncertainty given 

the artefact-corrected image is estimated from multiple forward passes of the network and is 

shown in Fig. 10 by the plots of mean and standard deviation (std) over the segmentation 

predictions. For comparison, we also show the uncertainty of the motion augmented model 

given the uncorrected image as input. In Fig. 10 we observe that the variance of the 

classically augmented model output given the motion-corrected image is generally of similar 

value to the model’s variance given the ground-truth artefact-free image, i.e. the classically 

augmented model is similarly confident in its predictions on the ground-truth artefact-free 

image as it is given the motion-corrected image. However, the KL-divergence (KLD) 

between the output distributions of the two images of the classically augmented model is 

very high, as shown by the regions of high KLD in the KLD map on the bottom row of Fig. 

10. This is much higher than the corresponding KLD of the motion augmented model. These 

regions of high KLD imply that the classically augmented model makes predictions that are 

very different between the two input images, even though the artefact should have been 

removed by the artefact-correction CNN if it was successful. Given that the ground-truth 

image is the correct one, the model’s prediction on the motion-corrected image must be 

inaccurate, despite the fact that the artefact has been corrected for. In comparison, the 

motion augmented model produces output distributions with generally lower KLD overall, 

even when the input to the network is the original artefact image, and has not been motion-

corrected. This implies that the motion augmented model gives more statistically similar 

results on artefacted images as it does on artefact-free images, and is, therefore, able to more 

robustly perform the CGM segmentation task given artefacted input data in comparison to 

trying to remove the artefact first and then attempting the segmentation using a model that 

has not been trained with artefact augmentation but only classical augmentations.

VII Discussion

Considering the results on data with synthetic artefacts, in the tasks of CGM, hippocampus 

and TIV segmentation, models trained with motion artefact augmentation perform generally 

better than models without any augmentation or with only classical augmentation (rotation, 

translation and scaling). For CGM and TIV segmentation, in terms of Dice, PPV and 

sensitivity metrics, the model that observes the most artefacts during training (50% artefacts) 

consistently performs significantly better than the others, with a lower result variance. For 

the hippocampus, the benefit of artefact augmentation is less clear. This is likely related to 

the location of the object (medial brain), thus being less affected by extra-cranial fat ringing 
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artefacts. For example, ringing artefacts mainly impact the cortical surface, and ghosting 

typically affects the TIV. For the average distance metric, the classically augmented model 

appears to perform better on CGM and hippocampus, whereas for TIV the artefact model is 

statistically significantly better.

On real-world data we observe a similar benefit to performance when training with 

simulated data. In terms of Dice score coefficient, PPV and sensitivity, the motion 

augmented models mostly perform better. This suggests the proposed motion artefact 

generation is realistic and contributes to increased robustness to artefacts of models trained 

with this augmentation. Additionally, it appears that the larger the artefactual variability 

encountered at training the better the performance of the model.

Limitations

Although artefact augmentation shows promising results for segmentation, there are 

limitations with the proposed model:

First, our motion augmentation model uses only magnitude images as input to enable its use 

on a wide variety of input data and supervision problems. Without phase information, 

generated artefacts are an approximation to the true artefact appearance. Phase information, 

if available, should be incorporated into the model to improve the realism of generated 

artefact patterns. This could potentially lead to bias in the neural network outputs, but, as 

shown through real-world data experiments, even without phase information we observe 

improved robustness and generalisation to real-world artefacts.

Second, the augmentation model assumes that a valid segmentation exists, but this may not 

always be true. With heavy artefacts caused by large movements, it is difficult to say with 

certainty where in space the true segmentation should be. If the subject’s head was in one 

place for 50% of the scan and in another position for the remaining time, where should the 

ground-truth segmentation be located? In this case, an uncertain segmentation is the only 

hypothetically correct answer.

Third, our CNN models are parameter-deprived due to memory constraints, as training with 

artefacts sometimes decreases inference performance on clean data. Note, however, that this 

drop in performance on clean data is not statistically significant, while often providing 

significant improvements on artefact data. While performance is a key goal, robustness to 

data artefacts is paramount to enable the safe clinical translation of such technique.

Fourth, our motion model is randomly sampled from PDFs, but human motion in MRI is not 

completely random and certain motions are more common, e.g. nodding when the patient 

swallows, and nor does it capture non-rigid motions. Additionally, motion is much more 

likely to appear between repetitions, and not within a short echo readout. Therefore the 

appearance and distribution of artefacts in our simulated dataset is not entirely representative 

of the distribution of observed real-world artefacts. With more consideration of the types of 

movements that occur, adaptation of the model could see a potential further increase in 

performance on real data.
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Overall, we must appreciate that the MR imaging process is complex, with many moving 

parts, making it difficult to simulate accurately. Coil sensitivities/arrangements/count, 

sequence timings (TR/TE), gradient ramp-up and cooling times, k-space trajectory, B1/B0 

inhomogeneities, patient spatial location, local magnetisation transfer effects etc. are all 

factors that affect artefact appearance. It would be unrealistic, however, given the volume 

and variability of data that is necessary to train deep learning systems to have a simulation 

system that encompassed all these factors. The proposed model is only approximate, and any 

attempt at generating such a simulator would most likely also be approximate even with 

more complex modelling and at the expense of increased computational time. The question 

that remains is: what is the sufficient amount of realism that transfers synthetic artefact 

patterns to real-world data? We have demonstrated in real-world experiments that, while 

being a rough approximation, the proposed model does confer the robustness that we expect, 

while ensuring the simulation is scalable and fast, and the data is large and varied.

VIII Conclusion

Our main contributions are threefold. Firstly, we propose a realistic, fully 3D, motion model 

of MRI acquisitions to augment training data, improving the performance and robustness of 

semantic segmentation CNNs to real-world artefacts. Training on simulated artefacts has 

been shown to successfully translate to improved performance on real-world artefacts, while 

the performance on artefact-free data is largely unaffected by the use of augmented data 

during training. Secondly, by training the different tasks end-to-end with motion 

augmentation, a new internal data representation is created allowing the model to become 

robust to the presence of artefact, instead of requiring an explicit intermediate step of 

artefact removal likely to destroy important image information. Lastly, our augmentation 

model provides more calibrated and informative uncertainty estimates for segmentation 

predictions in the presence of real-world motion-corrupted data. This is of utmost 

importance when addressing the question of safe clinical translation of such models.

What humans deem acceptable scan quality for radiological assessment is different to the 

quality required for automated analysis. With this in mind, we observe that scan quality is 

intrinsically related to the task being solved. This observation, as opposed to a human-

perceived notion of image-wide scan quality, is a concept rarely recognised by machine 

learning researchers, systems and datasets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Motion artefact augmentation framework: The artefact-free input volume is resampled 

according to a randomly sampled movement model, defined by a sequence of ‘demeaned’ 

3D affine transforms. Their 3D Fourier transforms are combined to form a composite k-

space, which is transformed back to the image domain producing the final artefact volume.
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Fig. 2. 
Motion artefacts generated by our augmentation model as a result of rotation of the head 

forwards and backwards around the coronal axis, simulating patient nodding motion. 

Changing artefact appearance due to changing the time during acquisition at which the 

movement occurs, later in the k-space scan trajectory from left to right, therefore retaining 

more lower spatial frequencies. Best viewed zoomed in on digital copy.
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Fig. 3. 
Effect of demeaning on the position of the brain: a) the input image volume, b) the final 

position of the brain without demeaning, c) the demeaned position. Demeaning keeps the 

artefacted brain in roughly the same position as the input, while without demeaning the brain 

moves out of field of view.
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Fig. 4. 
Segmentation results on simulated data for CGM, hippocampus and TIV across models. 

Top: Boxplots of different error metrics for 5 models with different augmentation: clean, 

classically augmented, 25%, 40%, 50% artefacts. Bottom: Bonferroni corrected pairwise 

Wilcoxon tests for Dice and average distance between column and row models - Green: 

significantly better, White: no statistically significant difference; Red: significantly worse.
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Fig. 5. 
Segmentation robustness on real-world test-retest data for CGM, hippocampus and TIV 

across models. Top: For each task, boxplots of different error metrics for the 5 CNN models 

in addition to a non-deep learning “bench-mark” method. Bottom: Bonferroni corrected 

pairwise Wilcoxon tests for Dice and average distance between column and row models - 

Green: significantly better, White: no statistically significant difference; Red: significantly 

worse.
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Fig. 6. 
Per-voxel mean and uncertainty estimations on CGM (top) and hippocampus (bottom) 

segmentation tasks for clean (no augmentation), classically augmented and motion 

augmented models for a test-retest pair for which one scan is heavily artefacted. The 

segmentation produced by a benchmark method is shown for reference. Bottom row of each 

block: KL-divergence (KLD) between the probability distributions produced by each model 

on clean and artefacted scans.
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Fig. 7. 
Histograms of per-voxel KLD associated to the uncertainty estimates as measured by the 

sample variance, shown for models trained with different augmentations on a) severe 

artefacts and b) minor artefacts. Note that the clean and classically augmented models 

produce a much higher number of estimates with high KLD and high variance (bottom-right 

corner of the histograms) compared to the motion augmented model.
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Fig. 8. 
A sample of artefact removal results for a hold-out synthetic test set. Top row: input 

artefacted image volumes. Middle row: artefact-corrected images as outputted from the 

CNN. Bottom row: ground-truth artefact-free images. Best viewed by zooming in on digital 

copy.
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Fig. 9. 
A sample of artefact removal results for an unseen real-world test set. Top row: input 

artefacted image volumes. Middle row: corrected image from the output of the CNN model. 

Bottom row: ground-truth artefact-free images. Best viewed by zooming in on digital copy.
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Fig. 10. 
Per-voxel mean and uncertainty estimations on the CGM segmentation task for classically 

augmented and motion augmented models. Results are shown for a test-retest pair for which 

one scan is heavily artefacted and for the corresponding motion-corrected image, as output 

by the artefact removal CNN. Bottom row: KL-divergence (KLD) between the probability 

distributions produced by each model.
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Table 1

Artefact removal performance on hold-out simulated and real-world artefacts presented as median [1st 

quartile, 3rd quartile]. Pairwise statistically significant according to paired sample Wilcoxon Tests (Bonferroni 

corrected) Improvements are Indicated in bold.

Simulated

Uncorrected Corrected

MAE 0.00434 [0.00323, 0.00599] 0.00343 [0.00271, 0.00452]

SSIM 0.96835 [0.94835, 0.98338] 0.98989 [0.98193, 0.99377]

Real-world

Uncorrected Corrected

MAE 0.00302 [0.00231, 0.00340] 0.00297 [0.00230, 0.00338]

SSIM 0.98566 [0.98001, 0.98886] 0.98604 [0.98105, 0.98960]
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